High Power
Soldered Fin Heat Sinks

Series SF

<table>
<thead>
<tr>
<th>Width B</th>
<th>Baseplate D1</th>
<th>Thickness D2</th>
<th>Fin Thickness FT</th>
<th>Height H</th>
<th>Length L</th>
</tr>
</thead>
<tbody>
<tr>
<td>min.</td>
<td>40</td>
<td>8</td>
<td>8</td>
<td>0.5</td>
<td>25</td>
</tr>
<tr>
<td>max.</td>
<td>300</td>
<td>25</td>
<td>15</td>
<td>2.0</td>
<td>150</td>
</tr>
</tbody>
</table>

DAU SF heat sinks now offer the design engineer the ability to dissipate extremely high power on small volume heat sinks. The unique solder technique creates an excellent interface between the copper baseplate and the tin plated copper fins which has no measurable thermal resistance.

Due to the thermal conductivity of copper being practically 2 times better than aluminum the fin efficiencies of the SF heat sinks are much higher than other types. Basically, all requested fin heights are available, but increasing the heights of the fins without a reasonable ΔT to the ambient temperature serves no useful purpose. Therefore Series SF allows smaller heatsinks or higher power losses with the same size.
High Power
Soldered Fin Heat Sinks

The SF heat sinks are designed for forced air convection. The thermal resistance depends mainly on the air velocity (airspeed) between the fins. Experience has shown that for good heat dissipation an air speed of 3 m/sec. or higher is necessary. Please contact us for details about pressure drop or fan selection.

Below is a comparison that shows the difference between an Aluminium and Copper heat sink with the same dimensions.

For protection against corrosion, Series SF can be nickel plated.

We also offer computer simulations of the heat sink at the design stage.